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GBUS /38

Skills You Will Develop In This Course

Fundamentals of
Programming with R

The basics of R programming

Data Analysis with the Data analysis and visualization techniques
Tidyverse using the popular tidyverse R package

Machine Learning with Training machine learning models with the
tidymodels tidymodels R framework

HEmBEg ANEWTICS Projes Data analysis and machine learning

and Communicating Business : . )
value = projects from start to finish using R
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Course Goals

Computer Programming Fundamentals

Writing Custom Functions for Data Analysis Tasks

Data types and structuresin R
« \ectors, Matrices, Lists and Data frames

my_data <- data.frame(gender = c("M","F","F"), mean_dev_3 <- function(x) {
test_1_grade = c(82, 93, 87), mean x <- mean(x) # calculate average
hw_1 grade = c(92, 89, 98), dev_vec <- x - mean x # calculate deviation wvector

session = c("7 AM", "7 PM", "7 AM"))
return(list(mean value = mean x,

# View the data dev_vector = dev_vec))
my_data }
gender test_1 grade hw_1 grade session my_result <- mean_dev_3(data)
1 M 82 92 7 AM -
2 F 93 89 7 PM
3 F 87 98 7 AM
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Course Goals
Data Analysis with the Tidyverse

Data Manipulation

heart %>J% group_by(ChestPain, HeartDisease) %>J
summarise (patients n = n(),
avg_chol = mean(Cholesterol),
sd_chol = sd(Cholesterol))

=

A tibble: 8 x ©

tidyverse.org

o

ggplot2

=
= @
Data Visualization

geplot(data = average delays, mapping = aes(x = month text, y = day_text,
fill = avg delay)) +

R packages for data science

The tidyverse is an opinionated collection of R packages
designed for data science. All packages share an
underlying design philosophy, grammar, and data

structures.

geom_tile() +

scale_fill_gradient2() +

labs(title = "Average Flight Delay By Month and Day",
x = "Month", y = "Day")

# Groups: ChestPain [4] .
ChesEPain HeartDisease patients n avg chol sd_chol Average Flight Delay By Month and Day
<chr> <chr> <int> <dbl> <dbl>
1 asymptomatic No 39 245, 48.9 Saturday -
2 asymptomatic Yes 103 253. 52.9
3 nonanginal No 65 247 . 64.7
4 nonanginal Yes 18 239 43.8 Friday -
5 nontypical Ne 40 241. 45.3
-
§Wednesday-
Data Wrangling and Reshaping
Tuesday -
1999 2000
Afghanistan 745 2,666 Afghanistan 745 Monday -
37,737 80,488 37,737
212,258 213,766 212,258
Afghanistan 2,666 Sunday -
80,488
213,766 Jan Feb Mar Apr May Jun Jul Alg Sép Oct Nov Dec

Manth
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Course Goals

Machine Learning Framework in R - tidymodels

tidymodels

Data
resampling

h ¢

rsample
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Feature
engineering

Model
fitting
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Tidymodels

Model
evaluation




Machine Learning
What is Machine Learning?

A subset of Artificial Intelligence
that gives computers the
capability to learn without being
explicitly programmed

Machine Learning
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Machine Learning
A New Programming Paradigm

Before ML

Computers were explicitly programmed to

achieve desired results Benefit

Explicit Program Correct output on every execution
If input numberiseven —  return “Yes” Challenge

If input numberisodd —  return “No” All rules to accomplish task must

be known in advance

Program Execution

Input Output
6 — Program Logic Executed —> “Yes”

/GEORGE
MASON

IIIIIIIIII

School of Business David Svancer — George Mason University School of Business



Machine Learning
Explicit Programming Workflow

Monitor performance on
new data and update rules
as needed

VAR

' Launch into

Study the
— _ 3

Production

Analyze
Errors
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Machine Learning
Learning From Data

Today ML Prediction Function Execution
ML algorithms use vast amounts of data to
discover patterns and relationships without relying Input Output
on a predetermined equations or set of rules as @ . _ o
model 6 — prediction function =™ “Yes
4 — prediction function — “NO0”
ML Program 3 — prediction function — “No”
Label | Data Value
Yes 2
Yes 12
No 3 .
Yes 4 —>» | earned prediction function Benefit
No S All steps/rules to accomplish do not have to
No 39 ..
be known or programmed explicitly
Challenge
Foeonce Prediction error
MASON

UNIVER SITY
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Machine Learning
Machine Learning Workflow

D t Monitor performance on new
ata data and re-train ML algorithm
as needed

2

Launch into

Study the

— Train ML Analyze ;

Production

Problem

algorithm Errors

IIIIIIIIII

School of Business David Svancer — George Mason University School of Business



Machine Learning
Example - Image Recognition

Task

|dentify handwritten digits

For a Human
Easy

For a Computer

Extremely difficult
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MNIST Database of Handwritten Digits

0000 Q0001
'SR BRERTAT S

292222233
333323373333
YAUFda Y44
F585555+-55
b66s0ebbb
2777%10777
EEPE L EFEE
799929799959
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Machine Learning
Without ML - Explicit Program

Explicit Program to Identify Digits

Imagine having to develop explicit
instructions for a program to correctly
identify handwritten digits

« You must identify every possible
variation of how digits appear and
instruct a computer to label them
correctly

» Practically impossible — your program
would be millions of lines long!

MNIST Database of Handwritten Digits

00 00AQQ000Y8
/L1 1LY 7|
AA22RX

NN T4 eWV
oo\ N9 >N L
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Machine Learning

A Machine Learning Approach

Encode Color Intensities and Apply ML Algorithms to Learn Patterns

28 x 28 imag
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e grid

Color intensities (0 — 255)

Number | Region_1 | .. | Region_467 | Region_468 | .. | Region_783 | Region_784
4 0 158 242 0 0
5 85 0 63 16 66
1 32 0 92 0 93
9 10 95 0 55 73
3 60 25 92 139
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Machine Learning
Demonstration of ML Algorithm

TensorFlow projection tool

https://projector.tensorflow.org/

~Z

UNIVERSITY

o
m

School of Business

0]

Goal - find the optimal
way to compress digit
image data to 3
dimensions so that the
same digits are grouped
together

Once this model is
discovered, we can use
it to predict new images
based on where they
fall in this 3-dimensional
space

Embedding Projector

DATA

5 tensors found

Mnist with images v
Label by Color by

label v label v

Supervise with

label v Noignored label
Edit by
label v Tag selection as
Load Publish Download Label

Sphereize data @

UMAP T-SNE PCA CUSTOM

Dimension 2D ‘ 3D
Perplexity @ —@- - 25

Learning P
rate ° 10

Supervise @ 0
Stop Pause Perturb

Iteration: 3

@ How to use t-SNE effectively.

| Points: 10000 | Dimension: 784
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Machine Learning Methods

Supervised Learning

Supervised learning algorithms learn prediction
functions from labeled training data.

Labeled data set from a hospital Outcome (Target, Response, Dependent) variable

« Each row represents a patient who —1—
eventually did or did not develop heart

disease (the outcome variable — Heart Heart Disease @ Age ChestPain  Resting BP  Cholesterol

DiSGGSG) No 63 typical 145 233
Yes 67 asymptomatic 160 286
Yes 67 asymptomatic 120 229
« QOur goal might be to predict whether a new No 37 | nonanginal 130 250
patient will develop heart disease using the NG 41 |nontypical 130 504
predictor variables g "
'l

» Foreach set of predictor values, we have a
known outcome

Predictor (Feature, Independent) variables

 We also have a set of predictor values for
each known outcome
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Machine Learning Methods

Supervised Learning - Regression

Regression

» Supervised learning methods are

used to predict quantitative
outcome variables

» Example

» Predict the selling price of homes
using features such as square

footage, age, location

Outcome Predictor
\ \
[ \
Selling Price Square
Footage

$105,667 1,100
$118,659 1,490
$134,268 1,850
$165,000 2,300

School of Business

Predicting Home Selling Price

160000

140000

Selling Price

120000
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Square Footage



Machine Learning Methods

Supervised Learning - Classification

Classification

Supervised learning methods used
to predict categorical outcome
variables

Segmenting the predictor values into distinct,
non-overlapping regions to predict a category

Example Decision Boundary - Black Line

* Predict whether a customer
will purchase a product based
on the seconds they have
spent browsing a company’s

Estimated Probability of Purchase

*e . .! L
*e
.:.

homepage and product page 4 IR Sl 3 T o7
L3 Ty 00 050
L 4 L ] L ]
$ $ +*% o .
$53 ;:'o'. 0333 $ t - 025
Outcome Predictors 1111 :.., ; 54, o .
(_A_\ [ | \ 20 . %1 i:i True Outcome

..ol °’;: 33,0

» . e Y% ¢ Purchased
L ] L ] :..

L ]

Purchase Seconds Seconds * Did Not Purchased

Homepage | Product Page

. . [ ] ..z i..
Did Not Purchase 4 30 /
0

Seconds Spent on Product Page

Purchased 32 43 l )
Z Did Not Purchase 2 22
Seconds Spent on Homepage
mESORGE Purchased 24 36
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Machine Learning Methods

Unsupervised Learning

In unsupervised learning, there are feature or input
variables, but no labeled outcome variable

* no “correct” prediction

In this setting, it is typically of interest to learn the
structure and relationships present in the unlabeled input
data

* Methods include Clustering and Principal Components
(PCA)

Marketing Example: Are there customer segments based
on purchasing behavior?

Are there different types or species of plants present in the data below?

# A tibble: 150 x 4

Sepal.lLength Sepal.Width Petal.length Petal.Width
<dbl> <dbl> <dbl > <dbl>
5.1 3.5 1.4 0.2
4.9 3 1.4 @.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5 3.6 1.4 @.2
5.4 3.9 1.7 0.4
4.6 3.4 1.4 8.3
5 3.4 1.5 8.2
4.4 2.9 1.4 0.2
4.9 3.1 1.5 8.1

# ... with 140 more rows

K-means Clustering

Finding observations that group together based
on their proximity in the input data space

Sepal Length vs Petal Length
8
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