GBUS 738 Data Mining

Introduction to CRISP-DM

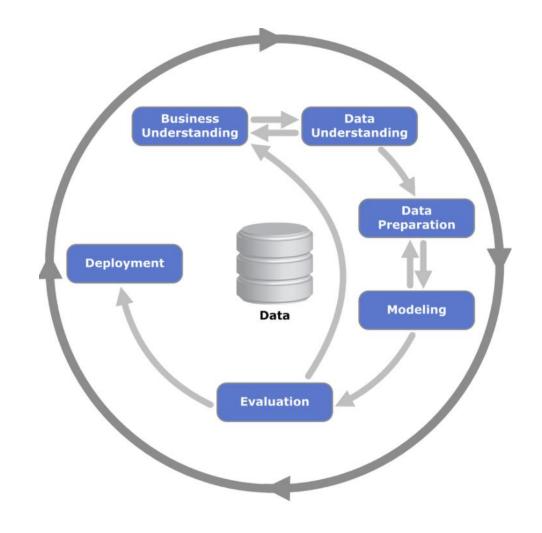
David Svancer – George Mason University School of Business

Data Mining Steps

Cross-Industry Standard Process for Data Mining (CRISP-DM)

The CRISP-DM methodology was designed specifically for data mining but is used for most data science/analytical projects. The steps include:

- 1. Business Understanding
- 2. Data Understanding
- 3. Data Preparation
- 4. Modeling
- 5. Evaluation
- 6. Deployment



Data Mining Steps CRISP-DM – Business Understanding

The **Business Understanding** step is focused on understanding project requirements from a business standpoint. It includes the following steps:

Identifying the business objective

- a) What problem is the business trying to solve?
 - For example, customers are spending to much time on a company's website searching for content
 - This is leading to customers leaving the website without purchasing products
 - An objective may be to find a way to display relevant content to the customer based on their website activity, leading to increased sales

Identify Business Objective

Data Mining Steps

CRISP-DM – Business Understanding

The **Business Understanding** step is focused on understanding project requirements from a business standpoint.

Determining the analytical goals

- a) What does success look like?
 - Decreased average time to product purchase?
- b) Which data mining algorithms can help the business meet its objectives? Depends on the goal:
 - Inference determining what factors drive customers to purchase products and generalizing this to a population
 - Prediction being able to predict relevant content with high accuracy
 - Some combination of both

Identify Business Objective

Define Success Metric(s)

Project Plan

Producing a project plan

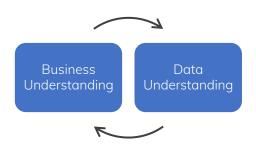
Data Mining Steps CRISP-DM – Data Understanding

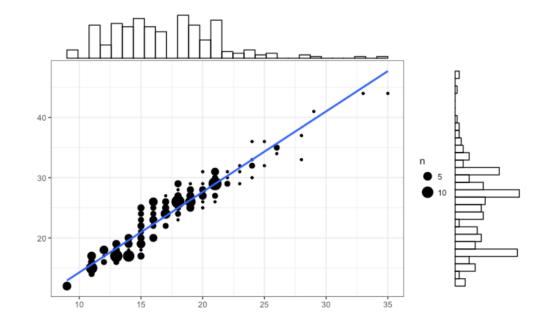
The **Data Understanding** step is focused on collecting, describing, and exploring data that **may** be useful in solving the business problem. It also includes verifying the quality of the data

In this stage, you are getting familiar with the data through exploratory data analysis (EDA)

- Exploration of variables in the data set with summary statistics, histograms, boxplots
- Looking for associations among variables
- Data visualization to study complex relationships
- Transforming variables to create new features/characteristics that might improve the performance of machine learning algorithms

Iterative Process





Data Mining Steps CRISP-DM – Data Preparation

The **Data Preparation** includes all steps in the process of converting raw data into **a numeric data matrix** for machine learning applications

This is sometimes referred to as **ETL** (Extract-Transform-Load). To accomplish this task, analysts might perform some or all the following tasks:

- 1. Import and clean the raw data
 - Clean unstructured text fields, format numeric variables, transform numeric variables
- 2. Constructing the final data set
 - Writing the code, whether in SQL or any other software language, that produces the final data set from the raw data
- Integrating the data into a production environment

Raw Data

Purchased	Age	Metro Area	Amount	LinkedIn URL
No	29	D.C.	\$0	Linkedin.com/hillary
Yes	67	Baltimore	\$50	Linkedin.com/matt
Yes	67	D.C.	\$30	Linkedin.com/mike
No	37	Boston	\$0	NULL
No	41	Pittsburgh	\$0	Linkedin.com/sara

Outcome

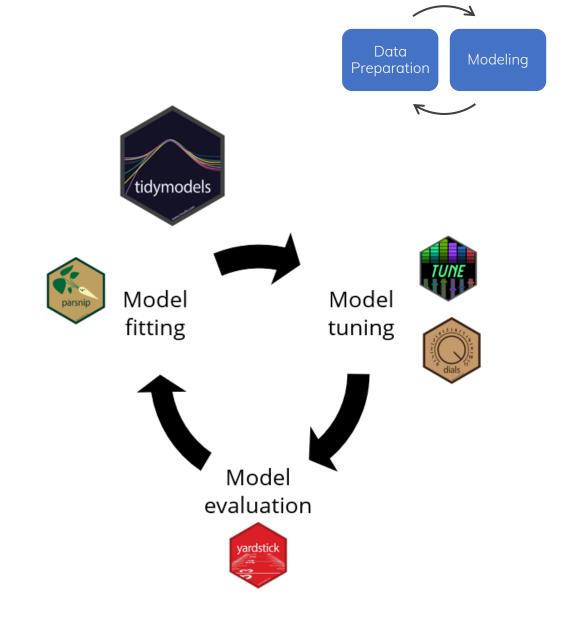
Purchased	Age	Metro_Boston	Metro_DC	Amount	Education_MS
0	29	0	1	0.0	0
1	67	0	0	50.0	1
1	67	0	1	30.0	0
0	37	1	0	0.0	0
0	41	0	0	0.0	1

Data Mining Steps CRISP-DM – Modeling

Modeling

Develop, train, and assess machine learning algorithms to determine which work best for solving the business problem

- All candidate machine learning algorithms are trained to optimize the business objective
- Having a clear business objective that is quantifiable is critical before proceeding with the Modeling stage



Iterative Process

Data Mining Steps CRISP-DM – Evaluation

The **Evaluation** step is concerned with determining whether the machine learning algorithm meets the business objective on **new data**

A learning algorithm should be tested on new, previously unseen data

- The algorithm was trained to optimize the business objective on the training data
 - Therefore, our **training error** is an **overly optimistic** estimate of what our future error will be on new data
- In this step, we find out if the algorithm generalizes well to new incoming data and produces acceptable results
- From our earlier example
 - Does our final model lead to increased product purchases on new data?

Data Mining Steps CRISP-DM – Deployment

In the **Deployment** phase, the final model is deployed throughout the business

- This may be as simple as producing monthly dashboards with model results to drive business decisions
- It may be the complex process of deploying a machine learning algorithm in a production environment, such as Microsoft Azure or AWS, where the results of the algorithm must be stored and passed between several business applications with customer interactions in real-time

Model Maintenance

Monitoring and Data Governance

Once the model is deployed into production

- Routines are developed to re-train the model as new data is available
 - Ensures new customer activity is continuously captured by the machine learning algorithm
- Governance
 - Strict rules must be put in place to ensure the raw data is not unknowingly altered, resulting in a crash of the machine learning system
 - Legal governance of model output and results
 - GDPR and customer privacy compliance
 - Monitor for potential algorithmic bias (Gender, Age, Ethnicity) that may put the company at legal risk

