# GBUS 738 Data Mining

#### Model Fitting Process David Svancer – George Mason University School of Business



**School of Business** 

#### Data Mining Steps Cross-Industry Standard Process for Data Mining (CRISP-DM)

The CRISP-DM methodology was designed specifically for data mining but is used for most data science/analytical projects. The steps include:

- 1. Business Understanding
- 2. Data Understanding
- 3. Data Preparation
- 4. Modeling
- 5. Evaluation
- 6. Deployment





# Machine Learning Process



School of Business

### Machine Learning Process Training and Test Sets

Why split the data?

- Guard against
  - Under-fitting
    - Model can't capture complex trends in the data
    - Give away poor accuracy on both training and test sets



#### **Predictor Value**



David Svancer – George Mason University School of Business

**Outcome Value** 

### Machine Learning Process Training and Test Sets

Why split the data?

- Guard against
  - Over-fitting
    - Model finds trends that don't exist
    - Give away high accuracy on training data, poor accuracy on test data

Outcome Value



#### **Predictor Value**



### Machine Learning Process Training and Test Sets

Generally, as we go from simple models to more complex

- Training error constantly decreases
- Test error decreases initially, but increases when we are over-fitting
- Goal is to find the optimal model complexity to ensure good performance on new data



#### Model Complexity



### Machine Learning Process Feature Engineering

- Removing Skewness
- Center and Scale (Z-Transform)
- Dummy Variables
- Impute Missing Data

| yes | 0.2  | 0 | 0 |
|-----|------|---|---|
| no  | 0.75 | 1 | 0 |
| yes | 1.3  | 0 | 1 |
|     |      |   |   |
|     |      |   |   |
|     |      |   |   |

predictor\_2\_moderate

predictor\_1

12.4

14.2

16.8

...

outcome

predictor\_1

yes

no

yes

...

outcome

predictor\_2

moderate

predictor\_2\_high

low

high



Predictor 1

Predictor 1 Skewness Transformation



Scaling Predictor Values





۰

...

School of Business

# Machine Learning Process





School of Business