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Linear regression is a supervised learning method for predicting 
a quantitative outcome variable. 

The Advertising data set contains a company’s sales revenue 
and advertising budgets (in thousands) for 200 markets and 
serves as the running example in chapter 3 of An Introduction 
to Statistical Learning. 

Linear regression can answer the following questions for this 
data set:

1. Is there a relationship between advertising budget and sales?

2. How strong is the relationship between advertising budget and sales?

3. Which advertising types contribute to sales?

4. How accurately can we predict future sales?

5. Is the relationship linear?

Linear Regression

Sales TV Radio Newspaper
22.1 230.1 37.8 69.2
10.4 44.5 39.3 45.1
9.3 17.2 45.9 69.3

18.5 151.5 41.3 58.5
12.9 180.8 10.8 58.4

… … … …
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Before we get into the details of linear 
regression, let’s review the definition 
of a functional relationship between 
variables

• If a company sells a certain product for 
$2.00, then the number of products sold, 
and revenue have a functional
relationship.

Linear Regression
Functional Relationship Between Variables

Products Sold Revenue

1 2

2 4

3 6
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Statistical relationships between 
variables have two components:

• A functional component which represents 
the expected value (mean) of the outcome 
variable Y given the predictor variable X, 
usually denoted by   𝐸 𝑌 𝑋 = 𝑥)

• A random component, which represents 
random deviations from the functional 
relationship

The graph on the right displays a statistical 
relationship between a response variable, 
Final Grade in STAT 201, and a predictor, 
Final Grade in STAT 101

Linear Regression
Statistical Relationship Between Variables
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In Simple Linear Regression, we have one predictor variable, and we assume 
the following functional relationship for the mean of the outcome variable, Y,  
given a value of the predictor X

𝐸(𝑌|𝑋 = 𝑥) = 𝛽0 + 𝛽1𝑥

Simple Linear Regression
Functional Component

𝛽0 - Mean outcome 
value when X = 0

𝛽1 - slope of the line represents 
the change in the mean outcome 
value for a one unit increase in X
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Simple Linear Regression assumes that each outcome value 𝑌, is a sum of the expected 
outcome given 𝑥 (functional component) and a random error component, ε

Simple Linear Regression
Adding the Random Component

𝑌 = 𝛽0 + 𝛽1𝑥 + ε

Statistical Assumptions

1. 𝐸 Y| X = 𝑥 = 𝛽0 + 𝛽1𝑥

2. 𝐸 ε = 0

3. Var ε = 𝜎2

4.  The error terms are independent

5.  Each ε is normally distributed

Image source: https://cbmm.mit.edu/sites/default/files/documents/probability_handout.pdf
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In practice, we do not know the true values of 𝛽0
and 𝛽1

• They must be estimated from our sample data 
and are denoted as ෢𝛽0 and ෢𝛽1

• Once we obtain these estimates, we can use our 
linear model to make predictions

• Predictions are of the form ෝ𝑦𝑖 = ෢𝛽0 +෢𝛽1𝑥𝑖

The most common way to obtain the coefficient 
estimates is by the method of least squares

• We find ෢𝛽0 and ෢𝛽1 by minimizing the following 
equation, known as the Residual Sum of Squares 
(RSS)

𝑅𝑆𝑆 =෍

𝑖=1

𝑛

( 𝑦𝑖 − ෝ𝑦𝑖)
2 = ෍

𝑖=1

𝑛

(𝑦𝑖 − ෢𝛽0 −෢𝛽1𝑥𝑖)
2

Simple Linear Regression
Estimating the Coefficients

Image source: An Introduction to Statistical Learning with Applications in R
James, Witten, Hastie, Tibshirani
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Given a set of n sample data points 𝑥𝑖 , 𝑦𝑖 , we can 
use a system of partial derivatives to determine the 
values of ෢𝛽0 and ෢𝛽1 that minimize the RSS

Simple Linear Regression
Estimating the Coefficients

Machine Learning – Gradient Descent Technique
Different estimates of ෢𝛽0 and ෢𝛽1 produces different values of the RSS 
(sum of the areas of the orange squares)

Goal: Iterate through data to minimize the area of the orange squares
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Under the assumptions of linear regression, an optimal 
estimator of 𝜎2 is 

෢𝜎2 =
𝑅𝑆𝑆

𝑛 −2
=

σ𝑖=1
𝑛 ( 𝑦𝑖 −ෞ𝑦𝑖)

2

𝑛 −2

An estimate of the common standard deviation of the 

error terms is just 𝑅𝑆𝑆

𝑛 −2
, many textbooks refer to this 

value as the RMSE (Root Mean Square Error). 

In R, it is known as the Residual Standard Error (RSE)

Roughly speaking, the RSE represents the average 
predictor error of the model

Simple Linear Regression
Residual Standard Error

Sample R output with the RSE highlighted
Estimated Regression Line:

Sales = 7.03 + (0.048)TV
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In simple linear regression, we are usually 
interested in knowing the value of the 
population parameter, 𝛽1. Specifically, 
whether this value is equal to 0.

If 𝛽1 = 0, then the true relationship 
between the outcome and predictor 
variable is

𝑌 = 𝛽0 + ε

In other words, there is no relationship 
between the outcome variable, Y, and the 
predictor variable X.

Simple Linear Regression
Hypothesis Testing for Model Parameters
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The hypothesis test of interest in simple linear regression is:
𝐻𝑜: 𝛽1 = 0 𝑣𝑠 𝐻𝑎: 𝛽1 ≠ 0

If 𝐻𝑜 is true, then the following test statistic follows a                      
t distribution with n – 2 degrees of freedom

𝑡 =
෢𝛽1

෢𝑆. 𝐸 (෢𝛽1)
=

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝛽1
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 𝑜𝑓𝛽1

In the R output on the right, our observed t statistic is 17.67 with 
198 degrees of freedom. 

Interpretation of the p-value in the output: If 𝐻𝑜 is true, then under 
random sampling, the probability of observing a 𝑡 statistic that is 
either 17.67 or greater or -17.67 or less is extremely small (<< 
0.0001)

Two things are possible:

1. You just witnessed an extremely rare outcome

2. What you assumed to be true, 𝛽1 = 0 in this case, is wrong

Simple Linear Regression
Hypothesis Testing for Model Parameters

Sample R output with the RSE highlighted
Estimated Regression Line:

Sales = 7.03 + (0.048)TV
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𝑹𝟐 represents the proportion of variability in the outcome values that is 
explained by the predictor values

• Ranges from 0 (worst) to 1 (best)

An equivalent interpretation of 𝑅2 is the squared correlation between 
the observed and predicted values in a linear regression model

Simple Linear Regression
Assessing the Predictive Power of a Regression Model: 𝑅2
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Residuals vs Fitted
• Model residuals ( 𝑦𝑖 − ෝ𝑦𝑖) vs predicted values ෝ𝑦𝑖
• You should see: Random scatter about 0 with no 

trends or patterns

• Assumptions checked include: 
• Expected Value of Y is a linear function of X
• Common Variance
• Independent Errors

Normal Q-Q
• You should see: most points fall on the line

• Assumptions checked include: 
• Errors are Normally Distributed

Scale-Location
You should see: a flat red line

Assumptions checked include: 
• Common Variance

Residuals vs Leverage
• Identifies potential outliers and high influence points

Simple Linear Regression
Diagnostic Plots to Access the Assumptions of Linear Regression
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The simple linear regression model can be extended to allow 
for multiple predictor variables. Just like in simple linear 
regression, we are still predicting the value of a numeric 
outcome variable Y

However, we now have p predictor variables, where p ≥ 2

In this setting we are assuming the following:

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + …+ 𝛽𝑝𝑥𝑝 + ε

The mean of Y given the predictors is now modeled as a plane
in multi-dimensional space. The error terms capture the 
random deviations from this population mean function.

The assumptions from before remain the same

Multiple Linear Regression
Extending Linear Regression to Incorporate Multiple Predictors

Image source: An Introduction to Statistical Learning with Applications in R
James, Witten, Hastie, Tibshirani
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Multiple Linear Regression
Estimating the Coefficients and Making Predictions

Just as in Simple Linear Regression, we do not know the true 
values of 𝛽0,  𝛽1, … , 𝛽𝑝

• They must be estimated from our sample data and are 
denoted as ෢𝛽0, ෢𝛽1, … , ෢𝛽𝑝

• Once we obtain these estimates, we can make predictions of 
the form ෝ𝑦𝑖 = ෢𝛽0 +෢𝛽1𝑥𝑖,1 + ෢𝛽2𝑥𝑖,2 + … + ෢𝛽𝑝𝑥𝑖,𝑝

We find ෢𝛽0, ෢𝛽1, … , ෢𝛽𝑝 by minimizing the Residual Sum of 
Squares (RSS)

𝑅𝑆𝑆 =෍

𝑖=1

𝑛

( 𝑦𝑖 − ෝ𝑦𝑖)
2 =෍

𝑖=1

𝑛

(𝑦𝑖 −෢𝛽0 −෢𝛽1𝑥𝑖,1 − ෢𝛽2𝑥𝑖,2 − …− ෢𝛽𝑝𝑥𝑖,𝑝)
2

Image source: An Introduction to Statistical Learning with Applications in R
James, Witten, Hastie, Tibshirani
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R will estimate the coefficients for us with the fit() function.

On the right, we are estimating the following multiple 
regression model that predicts mean Sales using TV, Radio, 
and Newspaper budgets:

𝑆𝑎𝑙𝑒𝑠 = 𝛽0 + 𝛽1𝑇𝑉 + 𝛽2𝑅𝑎𝑑𝑖𝑜 + 𝛽3𝑁𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟

Our estimate of this plane is:

෣𝑆𝑎𝑙𝑒𝑠 = 2.94 + 0.046𝑇𝑉 + 0.189𝑅𝑎𝑑𝑖𝑜 − 0.001𝑁𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟

The estimated Sales for the first row of the data would be:

ෝ𝑦𝑖 = 2.94 + 0.046 230.1 + 0.189 37.8 − 0.001 69.2 = 20.5

Multiple Linear Regression
Estimating the Coefficients and Making Predictions for Advertising Data

Sales TV Radio Newspaper
22.1 230.1 37.8 69.2
10.4 44.5 39.3 45.1
9.3 17.2 45.9 69.3

18.5 151.5 41.3 58.5
12.9 180.8 10.8 58.4

Parameter Estimates
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Is at least one predictor variable associated with the 
outcome variable?

This corresponds to the following hypothesis test for the 
Advertising model:

𝐻0: 𝛽1 = 𝛽2 = 𝛽3 = 0 vs 𝐻𝑎: At least one 𝛽𝑗 is non − zero

This test is conducted automatically in R, and the resulting 
F statistic and associated p-value are displayed at the 
bottom of the model summary

Our F statistic is 570.3 with a small p-value and provides 
strong evidence against 𝐻0. We have evidence that at least 
one predictor is associated with Sales.

Multiple Linear Regression
The F Test
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The t values and p-values displayed by R’s summary() 
function have a special interpretation in multiple 
regression
• They each represent something known as a partial F-Test

• The intuition behind this result is: given that I am using TV
and Radio as predictors, does Newspaper provide 
increased accuracy to my model?    Answer: No

Multiple Linear Regression
Partial F-Test
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Multiple Linear Regression
Adding Categorical Predictors – Dummy Variable Encoding

𝑆𝑒𝑙𝑙𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒 = 𝛽0 + 𝛽1𝑆𝑞𝑢𝑎𝑟𝑒 𝐹𝑜𝑜𝑡𝑎𝑔𝑒 + 𝛽2𝐶𝑖𝑡𝑦_𝐵𝑒𝑙𝑙𝑒𝑣𝑢𝑒 + 𝛽3𝐶𝑖𝑡𝑦_𝑆𝑒𝑎𝑡𝑡𝑙𝑒

Selling Price Square Footage City
320,000 1,760 Seattle
410,000 2,100 Auburn
275,000 1,550 Seattle
520,550 2,450 Bellevue
375,000 1,850 Auburn

Selling Price Square Footage City_Bellevue City_Seattle
320,000 1,760 0 1
410,000 2,100 0 0
275,000 1,550 0 1
520,550 2,450 1 0
375,000 1,850 0 0
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We can access the model fit in multiple linear regression using the same diagnostic 
plots and statistics as in Simple Linear Regression:
• RSE , R2 , Residual Plots

• Q-Q Plots, Visualization of R2 (Predicted vs Actual)

Multiple Linear Regression
Accessing Model Fit and Accuracy of Predictions


