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Is there a relationship between sales revenue and 
advertising budget?

We can answer this question by fitting a multiple 
linear regression of Sales using TV, Radio, and 
Newspaper as predictor variables and testing 
the following hypothesis:

𝐻0: 𝛽1 = 𝛽2 = 𝛽3 = 0 𝐯𝐬 𝐻𝑎: At least one 𝛽𝑗 is non − zero

From the output on the right, we have an F 
statistic of 570.3 with a highly significant p-
value.

This provides strong evidence against the null 
hypothesis, and we conclude that Sales revenue 
is associated with at least one advertising type.

Multiple Linear Regression
Advertising Data Analysis – Putting It All Together

𝑆𝑎𝑙𝑒𝑠 = 𝛽0 + 𝛽1𝑇𝑉 + 𝛽2𝑅𝑎𝑑𝑖𝑜 + 𝛽3𝑁𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟
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Which advertising media contribute to sales 
revenue?

To answer this question, we must examine the  
partial F-test results in the summary output. We 
find that the coefficient of Newspaper is not 
statistically significant. This corresponds to the 
following hypothesis:

𝐻0: 𝛽3 = 0 𝐯𝐬 𝐻𝑎: 𝛽3 ≠ 0

Interpretation: given that I am using TV and Radio
as predictors, Newspaper does not provide 
increased accuracy to the multiple linear 
regression model. This suggests that TV and 
Radio are the primary drivers of Sales revenue

Multiple Linear Regression
Advertising Data Analysis – Putting It All Together

𝑆𝑎𝑙𝑒𝑠 = 𝛽0 + 𝛽1𝑇𝑉 + 𝛽2𝑅𝑎𝑑𝑖𝑜 + 𝛽3𝑁𝑒𝑤𝑠𝑝𝑎𝑝𝑒𝑟



David Svancer – George Mason University School of Business

How large is the effect of each advertising type 
on Sales revenue?
The estimated coefficients associated with TV and Radio
advertising budgets are:

0.045 and 0.19 [remember that all units in the Advertising 
data set are in thousands]

Interpretation: For a $1,000 increase in TV advertising 
budget, we estimate that the increase in average Sales
revenue will be $45 for a fixed budget of Radio

For a $1,000 increase in Radio advertising budget, we 
estimate that the increase in average Sales revenue will be 
$190, for a fixed budget of TV

Overall, the effect of Radio advertising on average Sales is 
nearly 5 times greater than that of TV advertising

Multiple Linear Regression
Advertising Data Analysis – Putting It All Together

𝑆𝑎𝑙𝑒𝑠 = 𝛽0 + 𝛽1𝑇𝑉 + 𝛽2𝑅𝑎𝑑𝑖𝑜
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How strong is the relationship between 
sales revenue and advertising budgets for 
TV and Radio?

The R2 of the multiple linear regression on the 
right is 0.90 when rounded to 2 decimal places

Interpretation: TV and Radio advertising budgets 
explain approximately 90% of the total variance 
in Sales revenue, indicating a strong relationship 
between Sales revenue and advertising budgets

Multiple Linear Regression
Advertising Data Analysis – Putting It All Together

𝑆𝑎𝑙𝑒𝑠 = 𝛽0 + 𝛽1𝑇𝑉 + 𝛽2𝑅𝑎𝑑𝑖𝑜
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How accurately can we predict future Sales revenue?
The residual standard error (RSE) for this model is 1.681. As a 
proportion of the average Sales revenue in the data (14.02), the 
RSE represents approximately 12%.

Interpretation:  Roughly speaking, we can expect 12% prediction 
error, on average. We also note from the visualization of R2 that 
the highest prediction accuracy occurs for Sales values between 
approximately $14,000 and $22,000 

Multiple Linear Regression
Advertising Data Analysis – Putting It All Together

𝑆𝑎𝑙𝑒𝑠 = 𝛽0 + 𝛽1𝑇𝑉 + 𝛽2𝑅𝑎𝑑𝑖𝑜
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Is the relationship between average Sales 
revenue and advertising budgets linear?
We see a slight non-linear relationship in both the 
residual plot and the R2 visualization of predicted 
Sales versus actual Sales. The non-linearity mainly 
occurs at the lower and upper bounds of Sales
revenue. However, the model provides a reasonable 
approximation that is easy to interpret

Multiple Linear Regression
Advertising Data Analysis – Putting It All Together
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Machine Learning Methods
Supervised Learning - Classification

Segmenting the predictor values into distinct, 
non-overlapping regions to predict a category

Classification
Supervised learning methods used 
to predict categorical response 
variables

Example
• Predict whether a customer 

will purchase a product based 
on the seconds they have 
spent browsing a company’s 
homepage and product page

Outcome Seconds 
Homepage

Seconds 
Product Page

Did Not Purchase 4 30

Purchased 32 43

Did Not Purchase 2 22

Purchased 24 36

Outcome Predictors
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An example of classification would include predicting 
whether a patient will develop heart disease (Yes/No) 
using the Heart Disease data set on the right

• There are many classification techniques, or 
classifiers, that can be used to predict categorical 
outcome variables

• This lecture will focus on logistic regression

• Logistic regression is used to predict dichotomous
outcome variables – these are categorical variables 
with two levels

• The heart_disease variable on the right is dichotomous

Classification
Predicting Categorical Outcomes

heart_disease age chest_pain resting_bp cholesterol
No 63 typical 145 233

Yes 67 asymptomatic 160 286

Yes 67 asymptomatic 120 229

No 37 nonanginal 130 250

No 41 nontypical 130 204
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A Bernoulli random variable can be used to model the probabilistic behavior of 
dichotomous outcomes

• A common example would be tossing a fair coin

Positive class
• Event of interest to predict

• “Yes” in heart_disease outcome

Negative class
• Remaining class

• “No”

The Bernoulli distribution is indexed by a parameter p, which represents the probability that the 
outcome variable will be the positive class

Logistic Regression
a

The Bernoulli Distribution
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In logistic regression, we are predicting a 
dichotomous outcome variable Y 

• We map the event of interest to the Positive
class

• “Yes” in the heart_disease variable

We assume that each individual observation of Y
follows a Bernoulli distribution

Given predictor variables 𝑋1, 𝑋2, … , 𝑋𝑝, we 
assume that 

𝐸 𝑌𝑖 𝑋1 = 𝑥1, … , 𝑋𝑝 = 𝑥𝑝 = 𝑝𝑖

Logistic Regression
a

The Logistic Regression Setting

heart_disease age chest_pain resting_bp cholesterol
No 63 typical 145 233

Yes 67 asymptomatic 160 286

Yes 67 asymptomatic 120 229

No 37 nonanginal 130 250

No 41 nontypical 130 204
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𝐸 𝑌𝑖 𝑋1 = 𝑥1, … , 𝑋𝑝 = 𝑥𝑝 = 𝑝𝑖

In most textbooks, the above is denoted as 
𝑝(𝑥) and represents the probability of the 
positive class given the values of the predictor 
variable(s)

In logistic regression, we are modeling the 
relationship between 𝑝(𝑥) and the predictor 
variable values

We are interested in estimating 𝑝(𝑥) as a 
continuous function of the predictor variable 
values

Resting Blood 
Pressure

Heart Disease
Yes

Heart Disease
No

Estimated Probability of 
(Heart Disease = Yes)

110 1 4 0.20
130 2 6 0.25
150 4 3 0.57
170 5 2 0.71
190 7 2 0.78

Logistic Regression
a

The Logistic Regression Setting
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How should we estimate 𝑝 𝑥 ? 

For the case of one predictor variable 𝑋, why not use 
linear regression? This would be represented by the 
following model

𝐸 𝑌 𝑋 = 𝑥 = 𝑝 𝑥 = 𝛽0 + 𝛽1𝑥 + ε

For our example on the right, this gives us an estimated 
regression line of 

𝑝 𝑥 = −0.71 + 0.008(𝑅𝑒𝑠𝑡𝑖𝑛𝑔 𝐵𝑙𝑜𝑜𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

Problems with this model

• For resting blood pressure of 70, the estimated 
probability that a patient will develop heart disease is 
-0.15

• In linear regression the ε are assumed to have the 
same common variance, but by the properties of the 
Bernoulli distribution make this impossible

Resting Blood 
Pressure

Heart Disease
Yes

Heart Disease
No

Estimated Probability of 
(Heart Disease = Yes)

110 1 4 0.20
130 2 6 0.25
150 4 3 0.57
170 5 2 0.71
190 7 2 0.78

Logistic Regression
a

Why not linear regression?
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To avoid the problems we encountered on the previous 
slide, we must model 𝑝(𝑥) using a function that gives 
outputs between 0 and 1

In logistic regression, we use the logistic function. For the 
case of one predictor variable 𝑋, the logistic function 
takes the form below

𝑝 𝑥 =
1

1 + 𝑒−(𝛽0+𝛽1𝑥)

Three logistic curves are plotted to the right, using 
various values of 𝛽0 and 𝛽1
Estimating 𝑝 𝑥 = 𝑃 𝑌 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠 𝑋 = 𝑥) with the 
logistic function is a good choice since the logistic curve 
can take various shapes, from almost linear to extremely 
“S” shaped

Logistic Regression
a

The logistic function
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𝑝 𝑥 =
1

1+ 𝑒−(𝛽0+𝛽1𝑥)
is not a linear function of the predictor variable 𝑋

However, using a logit transformation, we can transform both sides of the equation to get 
a linear function of the predictor variable 𝑋

𝑙𝑜𝑔𝑖𝑡 𝑝 𝑥 = log
𝑝 𝑥

1 − 𝑝 𝑥
= log

1
1 + 𝑒−(𝛽0+𝛽1𝑥)

1 −
1

1 + 𝑒−(𝛽0+𝛽1𝑥)

= log

1
1 + 𝑒−(𝛽0+𝛽1𝑥)

1 + 𝑒−(𝛽0+𝛽1𝑥)

1 + 𝑒−(𝛽0+𝛽1𝑥)
−

1
1 + 𝑒−(𝛽0+𝛽1𝑥)

= log
1

1+ 𝑒−(𝛽0+𝛽1𝑥)

𝑒−(𝛽0+𝛽1𝑥)

1+ 𝑒−(𝛽0+𝛽1𝑥)

= log
1

𝑒−(𝛽0+𝛽1𝑥)
= log 𝑒(𝛽0+𝛽1𝑥) = 𝛽0 + 𝛽1𝑥

Logistic Regression
a

The logit Transformation
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Once we have our estimated coefficients, we can obtain an estimated probability for the 
positive class for any predictor value, x, with:

𝑝 𝑥 =
1

1+ 𝑒−(𝛽0+𝛽1𝑥)

How do we predict the outcome categories?

• If our estimated probability for a given x is greater than or equal to 0.5
• We predict the positive class

• Negative class otherwise

Logistic Regression
a

The logit Transformation
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Logistic Regression
a

Modeling Process

heart_disease resting_bp

No 127

Yes 145

Yes 135

No 130

No 135

No 90

Yes 130

Estimated
Parameters

𝛽0 = -33.94
𝛽1= 0.25

Logit (resting_bp)

-2.19

2.31

-0.19

-1.44

-0.19

-11.44

-1.44

Probability of  
Positive Class “Yes”

0.10

0.91

0.45

0.19

0.45

0.0

0.19

Predicted Heart 
Disease

No

Yes

No

No

No

No

No

Logistic Function

1

1 + 𝑒−(−33.94 +0.25𝑥)

Threshold

0.5
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The logistic regression model can easily be extended to incorporate multiple predictor 
variables

Just like in the multiple regression setting, predictors can be quantitative or categorical

In this case

𝑝 𝑥 =
1

1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝)

and
𝑙𝑜𝑔𝑖𝑡(𝑝 𝑥 ) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝

Logistic Regression
a

Multiple Logistic Regression
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A confusion matrix can be created for any classifier that is 
used to predict a dichotomous outcome variable

The positive class is associated with the level of the outcome 
variable representing our event of interest

In the heart disease data set, a positive (+) is associated 
with the “Yes” outcome for the heart_disease variable

Confusion Matrix
Evaluating Prediction Accuracy

Truth

P
re

di
ct

ed

+ - Row 
Total

+ TP FP P*

- FN TN N*

Column 
Total P N

Metric Meaning

True Positive (TP) Predicted Positive – Truth is Positive

True Negative (TN) Predicted Negative – Truth is Negative

False Positive (FP) Predicted Positive – Truth is Negative

False Negative (FN) Predicted Negative – Truth is Positive

Key Performance Measures:
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Interpretation

Overall, 58 patients (77%) were correctly classified. 
We predicted that 8 patients would not develop heart 
disease when in fact they did develop heart disease 
(false negative). 

Confusion Matrix
An Example Using the Heart Disease Data Set

Truth

P
re

di
ct

ed

+ - Row 
Total

+ 26 9 35

- 8 32 40

Column 
Total 34 41
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Sensitivity
• Proportion of actual positive cases that 

were correctly classified

• Also called recall

• Values near 1 are optimal

Of patients who did develop heart disease, what 
proportion did our model predict correctly?

Performance Metrics
Sensitivity (Recall)

Truth

P
re

di
ct

ed

Positive (+) Negative (-)

Positive (+) TP FP

Negative (-) FN TN

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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Specificity
• Proportion of actual negative cases that 

were correctly classified

• Values near 1 are optimal

Of patients who did not develop heart disease, 
what proportion did our model predict correctly?

1 – Specificity

• False positive rate (FPR)

• Proportion of false positives among true 
negatives

Performance Metrics
Specificity

Truth

P
re

di
ct

ed

Positive (+) Negative (-)

Positive (+) TP FP

Negative (-) FN TN

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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ROC curve plots the sensitivity vs (1 – specificity) for all 
possible probability cut-off values.

• The default probability cut-off value used by 
classification models is 0.5

• Changing this can guard against either false positives or 
false negatives. The ROC curve plots all this information in 
one plot

What to look for

• The best ROC curve is as close as possible to the point 
(0, 1) that is at the top left corner of the plot. The closer 
the ROC curve is to that point throughout the entire 
range, the better the classification model

Performance Metrics
ROC Curves and Area Under the ROC Curve
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Area Under the ROC Curve (AUC)

Another common performance metric. Can be 
interpreted as a letter grade for model performance:

• 0.9 – 1 = A

• 0.8 – 0.89 = B

• 0.7 – 0.79 = C

• 0.6 – 0.69 = D

• Below 0.6 = F

Performance Metrics
ROC Curves and Area Under the ROC Curve
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Precision
• Proportion of predicted positive cases 

that were correctly classified

• Values near 1 are optimal

Of patients who were predicted to develop 
heart disease, what proportion did our model 
predict correctly?

Performance Metrics
Precision

Truth

P
re

di
ct

ed

Positive (+) Negative (-)

Positive (+) TP FP

Negative (-) FN TN

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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Instead of having to look at both false positive and false 
negative rates, the F1 score combines both metrics into one 
overall score

▪ The F1 score gives equal weight to precision and recall
▪ Precision – function of false positives

▪ Recall (Sensitivity) – function of false negatives

▪ The F1 score ranges from 0 (worst) to 1 (best)

Precision Recall      
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

26

26+9
= 0.74

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

26

26+8
= 0.76

𝑭𝟏 Score

2
𝑃𝑅

𝑃+𝑅
= 2 ∗

(0.74)(0.76)

0.74 + 0.76
= 0.75

Performance Metrics
F1 Score – a single measure of performance

Truth

P
re

di
ct

ed

+ - Row 
Total

+ 26 9 35

- 8 32 40

Column 
Total 34 41


