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In logistic regression, we directly modeled 

𝑃(𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑙𝑎𝑠𝑠 | 𝑋 = 𝑥) using the logistic 
function

The blue function on the right, is the estimated 
logistic function for the probability that a patient 
will develop heart disease as a function of the 
patient’s age

Once we obtain estimated probabilities in logistic 
regression, we classify the categorical outcome 
variable based on a cut-off value (usually 0.5)

• This happens for all patients approximately 59 years and older 
based on the logistic curve on the right

Logistic Regression
Review of the Model
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Probability
Conditional Probability

Conditional probability is the probability that 
event A occurs given that event B has already 
occurred

• In supervised learning, classification models are 
based on this concept

The notation for writing the probability of A
given B is

𝑃 𝐴 𝐵 =
𝑃(𝐴 and 𝐵)

𝑃(𝐵)

Ratio of 
• the probability that both A and B occur

• The probability that B occurs

A B

A and B
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Probability
Conditional Probability

Suppose we are interested in knowing the probability of a fair 
die landing on 6 given that we know the outcome is an even 
number

Sample Space

• Set of all possible outcomes

• 1, 2, 3, 4, 5, 6

• All equally likely with probability of 1/6

A = Land on 6

B = Land on an even number

𝑃 𝐴 𝐵 =
𝑃(𝐴 and 𝐵)

𝑃 𝐵
=

1/6

3/6
=

1

3

A B

A and B
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Bayes theorem describes the probability of an event based on prior knowledge and is useful for 
changing the order in a conditional probability statement

• Bayes’ theorem is important in classification

• Allows us to estimate the probability that an observation is of a particular class given a predictor value based on the 
likelihood of the predictor value given that class

Probability
Bayes Theorem

𝑃 𝐴 𝐵 =
𝑃(𝐴 and 𝐵)

𝑃(𝐵)

𝑃(𝐵|𝐴) =
𝑃(𝐴 and 𝐵)

𝑃( 𝐴)

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
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Classification Task

Predict whether a patient will develop heart disease

A patient has a maximum heart rate of 140, what should 

we predict?

• Let Y be the event that a patient develops heart disease 

(heart_disease = “Yes”)

• Let N be the event that a patient does not develop heart 

disease (heart_disease = “No”)

• Let B be the event that a patient has a maximum heart 

rate of 140

heart_disease maximum_heart_rate

Yes 140

Yes 124

Yes 140

No 98

No 102

No 140

No 101

Probability
Bayes Theorem – An Example

Our Training Data
Assumed to be a random sample of patients

Let’s use our training data to estimate the probability of developing heart 
disease

𝑃 𝑌 𝐵 =
𝑃 𝐵 𝑌 𝑃(𝑌)

𝑃(𝐵)
=

2
3

3
7

3
7

=
2

3

𝑃 𝑁 𝐵 =
𝑃 𝐵 𝑁 𝑃(𝑁)

𝑃(𝐵)
=

1
4

4
7

3
7

=
1

3
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Logistic regression

• 𝑃(𝑌 = 𝑦| 𝑋 = 𝑥) is modeled directly with the logistic 
function

Discriminant analysis 

• Models the distribution of the predictor variables in 
each class of the outcome variable

• Uses Bayes Theorem to flip things around in order to 
obtain 𝑃(𝑌 = 𝑦| 𝑋 = 𝑥)

Recall that we can use Bayes Theorem to write the 
following:

𝑃(𝑌 = 𝑦| 𝑋 = 𝑥) =
𝑃(𝑋 = 𝑥| 𝑌 = 𝑦) 𝑃(𝑌 = 𝑦)

𝑃(𝑋 = 𝑥)

Linear Discriminant Analysis
Using Bayes Theorem to Obtain 𝑃(𝑌 = 𝑦| 𝑋 = 𝑥)

heart_disease maximum_heart_rate

Yes 140

Yes 124

Yes 140

No 98

No 102

No 140

No 101

To make classification decisions, we can ignore the 
denominator since it is just a constant

• We ignored the 3/7 in the denominator in the 
previous example since we get the same outcome

All we need to estimate for each class of our response 
variable is

𝑃(𝑋 = 𝑥| 𝑌 = 𝑦) 𝑃(𝑌 = 𝑦)
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𝑃(𝑋 = 𝑥| 𝑌 = 𝑦) 𝑃(𝑌 = 𝑦) is written

differently in the discriminant analysis setting:

𝜋𝑘 𝑓𝑘(𝑥)

𝑓𝑘 𝑥

• Represents 𝑃 𝑋 = 𝑥 𝑌 = 𝑘)

• Probability density function for the predictor variable 𝑋 within 
class k

• 𝑓𝑘 𝑥 are assumed to be Normal distributions

𝜋𝑘

• Represents 𝑃(𝑌 = 𝑘)

• Prior probability that an observation is in class k

Linear Discriminant Analysis
Bayes Theorem in Discriminant Analysis

https://mat117.wisconsin.edu/wp-content/uploads/2014/12/Sec03.-NormalDis.png
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The goal of discriminant analysis is to estimate

𝜋𝑘 𝑓𝑘(𝑥)

for each class of the outcome variable and to 

predict the class with the largest estimated 

probability

Linear Discriminant Analysis
Goal of Discriminant Analysis
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We assume that for each class of the outcome variable, the predictor variable follows a Normal distribution with 
common variance

𝑓𝑘 𝑥 =
1

2𝜋𝜎
𝑒
−1
2

𝑥 − 𝜇𝑘
𝜎

2

To classify the outcome variable at the value 𝑋 = 𝑥, we need to find the maximum value of 𝜋𝑘 𝑓𝑘(𝑥) among the 
different classes of the outcome variable

Linear Discriminant Analysis
Linear Discriminant Analysis with One Predictor Variable
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Linear Discriminant Analysis
Applied Example with One Predictor Variable

Car Type Highway 
MPG

SUV 20
SUV 16
SUV 19
SUV 16

Compact 32
Compact 27
Compact 29
Compact 28
Compact 28
Compact 25

Goal - Use LDA to predict Car Type using Highway MPG

• For any new value of Highway MPG, we classify based on which of the quantities below is greater

𝜋𝑆𝑈𝑉 𝑓𝑆𝑈𝑉(𝑥) or      𝜋𝐶𝑜𝑚𝑝𝑎𝑐𝑡 𝑓𝐶𝑜𝑚𝑝𝑎𝑐𝑡(𝑥)
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Linear Discriminant Analysis
Estimating Parameters From the Data

Car Type Highway 
MPG

SUV 20
SUV 16
SUV 19
SUV 16

Compact 32
Compact 27
Compact 29
Compact 28
Compact 28
Compact 25

Class
k

Class 
Probability

𝝅𝒌

Class
Average

ෞµ𝑘

Class 
Variance

𝜎2

Class Standard 
Deviation

ෝ𝜎

SUV 4/10 = 0.4 17.8 4.3 2.1

Compact 6/10 = 0.6 28.2 5.4 2.3

Next, we estimate the mean and standard deviation of Highway MPG 
within each class of Car Type using the summary statistics ത𝑋 and 𝑆



David Svancer – George Mason University School of Business

Linear Discriminant Analysis
Estimating Common Variance From Groups – Pooled Variance

Class
k

Class Probability
𝝅𝒌

Class
Average

ෞµ𝑘

Class 
Variance

𝜎2

Class Standard 
Deviation

ෝ𝜎

SUV 4/10 = 0.4 17.8 4.3 2.1
Compact 6/10 = 0.6 28.2 5.4 2.3

Linear Discriminant Analysis assumes a common variance within all classes of the outcome variable

• We must combine our two estimates of the variance above into one overall estimate
• The Pooled Sample Variance, usually written as 𝑆𝑝

2, is used for this purpose

• 𝑆𝑝
2 is just a weighted average of the estimated group variances

Formula ( 𝑛𝑖 is the number of observations in group i )

𝑆𝑝
2 =

σ𝑖=1
𝑘 𝑛𝑖 − 1 𝑠𝑖

2

σ𝑖=1
𝑘 𝑛𝑖 − 1

=
4 − 1 ∗ 4.3 + 6 − 1 ∗ 5.4

4 − 1 + (6 − 1)
=

3 ∗ 4.3 + 5 ∗ 5.4

8
= 4.988

Pooled Standard Deviation, 𝑆𝑝 = 𝑆𝑝
2 = 4.988 = 2.2
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Now we have all the estimates that we need

• Each group is modeled as a Normal distribution with 
group-specific mean and common standard deviation

• 𝑓𝑆𝑈𝑉 𝑥 =
1

2𝜋 (𝟐.𝟐)
𝑒
−1

2

𝑥 −𝟏𝟕.𝟖

𝟐.𝟐

2

• 𝑓𝐶𝑜𝑚𝑝𝑎𝑐𝑡 𝑥 =
1

2𝜋 (𝟐.𝟐)
𝑒
−1

2

𝑥 −𝟐𝟖.𝟐

𝟐.𝟐

2

Linear Discriminant Analysis
Estimating Group-Specific Normal Distributions

Class
k

Class 
Probability

𝝅𝒌

Class
Average

ෞµ𝑘

Class 
Variance

𝜎2

Class Standard 
Deviation

ෝ𝜎

Pooled Standard 
Deviation, 𝑆𝑝

SUV 4/10 = 0.4 17.8 4.3 2.1
2.2

Compact 6/10 = 0.6 28.2 5.4 2.3
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Linear Discriminant Analysis
Predictions For New Data

New Data: Highway MPG is 26

What type of car is it?

• 𝜋𝑆𝑈𝑉 𝑓𝑆𝑈𝑉 𝟐𝟔 =

0.4 ∗
1

2𝜋 𝟐. 𝟐
𝑒
−1
2

𝟐𝟔 −𝟏𝟕.𝟖
𝟐.𝟐

2

= 0.00015

• 𝜋𝐶𝑜𝑚𝑝𝑎𝑐𝑡 𝑓𝐶𝑜𝑚𝑝𝑎𝑐𝑡 𝟐𝟔 =

0.6 ∗
1

2𝜋 𝟐. 𝟐
𝑒
−1
2

𝟐𝟔 −𝟐𝟖.𝟐
𝟐.𝟐

2

= 𝟎. 𝟏𝟒𝟓

• Conclusion – we predict Compact
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Linear discriminant analysis is easily 
extended to the case in which we have 
multiple numeric predictor variables

• In this case, the set of predictor variables are 
assumed to follow a multivariate normal 
distribution with common covariance matrix 
within each class

Linear Discriminant Analysis
Linear Discriminant Analysis with Multiple Predictor Variables
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In Quadratic Discriminant Analysis (QDA) we assume that for each class of the outcome variable, 
the predictor variable follows a Normal distribution with class specific variance

𝑓𝑘 𝑥 =
1

2𝜋𝜎𝑘
𝑒
−1
2

𝑥 − 𝜇𝑘
𝜎𝑘

2

As in LDA, we need to find the maximum value of 𝜋𝑘 𝑓𝑘(𝑥) among the different classes of the 
outcome variable

Quadratic Discriminant Analysis
Quadratic Discriminant Analysis with One Predictor Variable
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Discriminant Analysis
LDA – Linear Decision Boundary

Segmenting the predictor values into distinct, non-
overlapping regions to predict a category

Example

Predict whether a customer will purchase a 
product based on the seconds they have spent 
browsing a company’s homepage and product 
page

Outcome Seconds 
Homepage

Seconds Product 
Page

Did Not Purchase 4 30

Purchased 32 43

Did Not Purchase 2 22

Purchased 24 36

Outcome Predictors
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Discriminant Analysis
QDA – Quadratic Decision Boundary

Segmenting the predictor values into distinct, non-
overlapping regions to predict a category

Example

Predict whether a customer will purchase a 
product based on the seconds they have spent 
browsing a company’s homepage and product 
page

Outcome Seconds 
Homepage

Seconds Product 
Page

Did Not Purchase 4 30

Purchased 32 43

Did Not Purchase 2 22

Purchased 24 36

Outcome Predictors
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• KNN is simple non-parametric technique that 

can be applied to both regression and 

classification problems

• KNN uses a simple approach in making 

predictions

• Finds the K nearest points to a particular predictor 

variable value and predicts either the mean of these 

points (regression) or the outcome class with the 

largest proportion in the sample of K points

• To find the K nearest points, most KNN

algorithms use Euclidean distance by default 

K-Nearest Neighbor (KNN)
A Non-Parametric Approach to Estimating an Outcome Variable

Predict highway MPG for city 
MPG of 30 with K = 4

33 + 37 + 41 + 44

4
= 38.8
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K is known as a model hyperparameter

As we increase the value of K, the resulting 
predictions become more smooth

The challenge is to find the optimal value of K
that produces the lowest prediction error

• Known as hyperparameter tuning

• Accomplished with the tune package from 
tidymodels

K-Nearest Neighbor
Model hyperparameters
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Machine Learning Process

Response Predictor 1 Predictor 2

Yes 12.4 Low

No 14.2 Moderate

Yes 16.8 High 

… … …

Response Predictor 1 Predictor 2

Yes 12.4 Low

Yes 16.8 High

No 11.8 Low 

… … …

Response Predictor 1 Predictor 2

Yes 11.2 Low

No 14.2 Moderate

… … …

Training Set

Test Set

Feature Engineering

Model Training

Trained Model

70%

30%
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Hyperparameter Tuning
a

K-fold Cross Validation

There are drawbacks to the training/test set 
approach

• We only get one estimate of model 
performance (on the test set)

K-fold cross validation is one way to improve 
our estimates

• Randomly divide the training data into K
equal-sized parts



David Svancer – George Mason University School of Business

For each K

• Leave out data set K and fit the model to the 
other combined K − 1  data sets

Hyperparameter Tuning
a

K-fold Cross Validation
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For each K

• Leave out data set K and fit the model to 
the other combined K − 1  data sets

• Repeat this process for various values of 
our hyperparameters

Hyperparameter Tuning
a

K-fold Cross Validation
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For each K

• Leave out data set K and fit the model to 
the other combined K − 1  data sets

• Repeat this process for various values of 
our hyperparameters

• Select the best hyperparameter value(s) 
based on cross validation results

Neighbors (K) Fold ROC AUC

5 1 0.74

5 2 0.68

… … …

10 1 0.59

… … …

25 5 0.87

Hyperparameter Tuning
a

K-fold Cross Validation


