GBUS 738 Data Mining

Discriminant Analysis and KNN

David Svancer – George Mason University School of Business

School of Business

David Svancer – George Mason University School of Business

Logistic Regression Review of the Model

In logistic regression, we directly modeled

 $P(Positive \ class \mid X = x)$ using the logistic function

The blue function on the right, is the estimated logistic function for the probability that a patient will develop heart disease as a function of the patient's age

Once we obtain estimated probabilities in logistic regression, we classify the categorical outcome variable based on a cut-off value (usually 0.5)

• This happens for all patients approximately 59 years and older based on the logistic curve on the right

Probability Conditional Probability

Conditional probability is the probability that event **A** occurs given that event **B** has already occurred

• In supervised learning, *classification* models are based on this concept

The notation for writing the probability of **A** *given* **B** is

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

Ratio of

- the probability that both A and B occur
- The probability that **B** occurs

Probability Conditional Probability

Suppose we are interested in knowing the probability of a fair die landing on 6 given that we know the outcome is an even number

Sample Space

- Set of all possible outcomes
- 1, 2, 3, 4, 5, 6
- All equally likely with probability of 1/6
- **A** = Land on 6
- **B** = Land on an even number

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{1/6}{3/6} = \frac{1}{3}$$

Probability Bayes Theorem

Bayes theorem describes the probability of an event based on prior knowledge and is useful for changing the order in a conditional probability statement

- Bayes' theorem is important in *classification*
 - Allows us to estimate the probability that an observation is of a particular class given a predictor value **based on the** *likelihood of the predictor value given that class*

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

Probability Bayes Theorem – An Example

Classification Task

Predict whether a patient will develop heart disease

A patient has a maximum heart rate of 140, what should we predict?

- Let Y be the event that a patient develops heart disease (heart_disease = "Yes")
- Let N be the event that a patient does not develop heart disease (heart_disease = "No")
- Let **B** be the event that a patient has a maximum heart rate of 140

Our Training Data

Assumed to be a random sample of patients

heart_disease	maximum_heart_rate
Yes	140
Yes	124
Yes	140
No	98
No	102
No	140
No	101

Let's use our training data to estimate the probability of developing heart disease

$$P(Y|B) = \frac{P(B|Y) P(Y)}{P(B)} = \frac{\left(\frac{2}{3}\right)\left(\frac{3}{7}\right)}{\frac{3}{7}} = \frac{2}{3}$$
$$P(N|B) = \frac{P(B|N) P(N)}{P(B)} = \frac{\left(\frac{1}{4}\right)\left(\frac{4}{7}\right)}{\frac{3}{7}} = \frac{1}{3}$$

Linear Discriminant Analysis Using Bayes Theorem to Obtain P(Y = y | X = x)

Logistic regression

P(Y = y | X = x) is modeled directly with the logistic function

Discriminant analysis

- Models the distribution of the predictor variables in each class of the outcome variable
- Uses Bayes Theorem to flip things around in order to obtain P(Y = y | X = x)

Recall that we can use Bayes Theorem to write the following:

$$P(Y = y | X = x) = \frac{P(X = x | Y = y) P(Y = y)}{P(X = x)}$$

To make classification decisions, we can **ignore the denominator** since it is just a constant

• We ignored the 3/7 in the denominator in the previous example since we get the same outcome

All we need to estimate for each class of our response variable is

$$P(X = x | Y = y) P(Y = y)$$

heart_disease	maximum_heart_rate
Yes	140
Yes	124
Yes	140
No	98
No	102
No	140
No	101

Linear Discriminant Analysis Bayes Theorem in Discriminant Analysis

P(X = x | Y = y) P(Y = y) is written

differently in the discriminant analysis setting:

$\pi_k f_k(x)$

 $f_k(x)$

- Represents P(X = x | Y = k)
- Probability density function for the predictor variable *X* within class *k*
- $f_k(x)$ are assumed to be **Normal distributions**

π_k

- Represents P(Y = k)
- Prior probability that an observation is in class k

https://mat117.wisconsin.edu/wp-content/uploads/2014/12/Sec03.-NormalDis.png

Linear Discriminant Analysis Goal of Discriminant Analysis

The goal of discriminant analysis is to estimate

$\pi_k f_k(x)$

for **each class** of the outcome variable and to predict the class with the largest estimated probability

Linear Discriminant Analysis with One Predictor Variable

We assume that for each class of the outcome variable, the predictor variable follows a *Normal distribution with common variance*

$$f_k(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-1}{2} \left(\frac{x-\mu_k}{\sigma}\right)^2}$$

To classify the outcome variable at the value X = x, we need to find the maximum value of $\pi_k f_k(x)$ among the different classes of the outcome variable

Linear Discriminant Analysis Applied Example with One Predictor Variable

Goal - Use LDA to predict Car Type using Highway MPG

• For any new value of Highway MPG, we classify based on which of the quantities below is greater

$$\pi_{SUV} f_{SUV}(x)$$
 or $\pi_{Compact} f_{Compact}(x)$

Car Type	Highway MPG
SUV	20
SUV	16
SUV	19
SUV	16
Compact	32
Compact	27
Compact	29
Compact	28
Compact	28
Compact	25

David Svancer – George Mason University School of Business

Linear Discriminant Analysis Estimating Parameters From the Data

Next, we estimate the mean and standard deviation of **Highway MPG** within each class of **Car Type** using the summary statistics \overline{X} and S

Car Type	Highway MPG
SUV	20
SUV	16
SUV	19
SUV	16
Compact	32
Compact	27
Compact	29
Compact	28
Compact	28
Compact	25

Class <i>k</i>	Class Probability π_k	Class Average $\widehat{\mu_k}$	Class Variance $\widehat{\sigma^2}$	Class Standard Deviation $\widehat{\sigma}$
SUV	4/10 = 0.4	17.8	4.3	2.1
Compact	6/10 = 0.6	28.2	5.4	2.3

Linear Discriminant Analysis Estimating Common Variance From Groups – Pooled Variance

Class k	Class Probability π_k	Class Average $\widehat{\mu_k}$	Class Variance $\widehat{\sigma^2}$	Class Standard Deviation $\widehat{\sigma}$
SUV	4/10 = 0.4	17.8	4.3	2.1
Compact	6/10 = 0.6	28.2	5.4	2.3

Linear Discriminant Analysis assumes a *common variance* within all classes of the outcome variable

- We must combine our two estimates of the variance above into one overall estimate
- The Pooled Sample Variance, usually written as S_p^2 , is used for this purpose
- S_p^2 is just a weighted average of the estimated group variances

Formula (n_i is the number of observations in group i)

$$S_p^2 = \frac{\sum_{i=1}^k (n_i - 1) s_i^2}{\sum_{i=1}^k (n_i - 1)} = \frac{(4 - 1) * 4.3 + (6 - 1) * 5.4}{(4 - 1) + (6 - 1)} = \frac{(3) * 4.3 + (5) * 5.4}{8} = 4.988$$

Pooled Standard Deviation, $S_p = \sqrt{S_p^2} = \sqrt{4.988} = 2.2$

Linear Discriminant Analysis Estimating Group-Specific Normal Distributions

Now we have all the estimates that we need

• Each group is modeled as a Normal distribution with group-specific mean and common standard deviation

•
$$f_{SUV}(x) = \frac{1}{\sqrt{2\pi} (2.2)} e^{\frac{-1}{2} \left(\frac{x-17.8}{2.2}\right)^2}$$

•
$$f_{Compact}(x) = \frac{1}{\sqrt{2\pi} (2.2)} e^{\frac{-1}{2} \left(\frac{x-28.2}{2.2}\right)^2}$$

Class k	Class Probability π_k	Class Average $\widehat{\mu_k}$	Class Variance $\widehat{\sigma^2}$	Class Standard Deviation $\widehat{\sigma}$	Pooled Standard Deviation, S _p
SUV	4/10 = 0.4	17.8	4.3	2.1	2.2
Compact	6/10 = 0.6	28.2	5.4	2.3	۷.۲

School of Business

David Svancer – George Mason University School of Business

Linear Discriminant Analysis Predictions For New Data

New Data: Highway MPG is 26

What type of car is it?

• $\pi_{SUV} f_{SUV}(26) =$

$$(0.4) * \frac{1}{\sqrt{2\pi} (2.2)} e^{\frac{-1}{2} \left(\frac{26 - 17.8}{2.2}\right)^2} = 0.00015$$

• $\pi_{Compact} f_{Compact}(\mathbf{26}) =$

$$(0.6) * \frac{1}{\sqrt{2\pi} (2.2)} e^{\frac{-1}{2} \left(\frac{26 - 28.2}{2.2}\right)^2} = 0.145$$

Linear Discriminant Analysis with Multiple Predictor Variables

Linear discriminant analysis is easily extended to the case in which we have multiple numeric predictor variables

 In this case, the set of predictor variables are assumed to follow a *multivariate normal distribution* with common covariance matrix within each class

School of Business

David Svancer – George Mason University School of Business

Quadratic Discriminant Analysis with One Predictor Variable

In Quadratic Discriminant Analysis (QDA) we assume that for each class of the outcome variable, the predictor variable follows a *Normal distribution with class specific variance*

$$f_{\mathbf{k}}(x) = \frac{1}{\sqrt{2\pi\sigma_{\mathbf{k}}}} e^{\frac{-1}{2} \left(\frac{x-\mu_{\mathbf{k}}}{\sigma_{\mathbf{k}}}\right)^2}$$

As in LDA, we need to find the maximum value of $\pi_k f_k(x)$ among the different classes of the outcome variable

Discriminant Analysis LDA – Linear Decision Boundary

Example

Predict whether a customer will purchase a product based on the seconds they have spent browsing a company's homepage and product page

Outcome	Predictors		
Outcome	Seconds Homepage	Seconds Product Page	
Did Not Purchase	4	30	
Purchased	32	43	
Did Not Purchase	2	22	
Purchased	24	36	

Segmenting the predictor values into distinct, nonoverlapping regions to predict a category

LDA - Linear Decision Boundary

Seconds Spent on Homepage

Discriminant Analysis QDA – Quadratic Decision Boundary

Example

~

Predict whether a customer will purchase a product based on the seconds they have spent browsing a company's homepage and product page

Outcome	Predictors			
L	۱			
Outcome	Seconds	Seconds Product		
	Homepage	Page		
Did Not Purchase	4	30		
Purchased	32	43		
Did Not Purchase	2	22		
Purchased	24	36		

Segmenting the predictor values into distinct, nonoverlapping regions to predict a category

QDA - Linear Decision Boundary

Seconds Spent on Homepage

K-Nearest Neighbor (KNN) A Non-Parametric Approach to Estimating an Outcome Variable

- KNN is simple non-parametric technique that can be applied to both regression and classification problems
- KNN uses a simple approach in making predictions
 - Finds the *K* **nearest** points to a particular predictor variable value and predicts either the mean of these points (regression) or the outcome class with the largest proportion in the sample of *K* points
- To find the *K* nearest points, most *KNN* algorithms use **Euclidean distance** by default

cty	^ hwy	÷ -	fl [‡]	class \diamond
2	6	35	r	compact
2	8	33		subcompact
2	8	37		compact
2	9	41	t i	subcompact
3	3	44	t i	compact
3	5	44	d	subcompact

Predict highway MPG for city MPG of 30 with K = 4

33 + 37 -	+ 41 + 44	_	20 Q
4	4		50.0

K-Nearest Neighbor Model hyperparameters

K is known as a model **hyperparameter**

As we increase the value of *K*, the resulting predictions become more smooth

The challenge is to find the optimal value of *K* that produces the lowest prediction error

- Known as hyperparameter tuning
- Accomplished with the tune package from tidymodels

Machine Learning Process

Training Set

There are drawbacks to the training/test set approach

• We only get one estimate of model performance (on the test set)

K-fold cross validation is one way to improve our estimates

• Randomly divide the training data into *K* equal-sized parts

For each K

Leave out data set K and fit the model to the other combined K – 1 data sets

School of Business

David Svancer – George Mason University School of Business

For each K

- Leave out data set K and fit the model to the other combined K – 1 data sets
- Repeat this process for various values of our hyperparameters

For each K

- Leave out data set K and fit the model to the other combined K – 1 data sets
- Repeat this process for various values of our hyperparameters
- Select the best hyperparameter value(s) based on cross validation results

Cross Validation Folds		Iteration 5
		Model Training
		Model Training
	Modeling	
		Model Training
		Model Training
		Performance Evaluation

Neighbors (K)	Fold	ROC AUC
5	1	0.74
5	2	0.68
10	1	0.59
25	5	0.87

